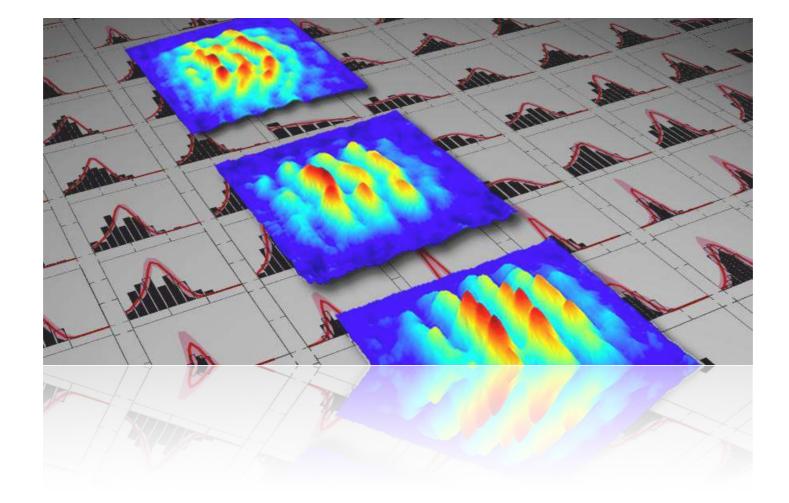
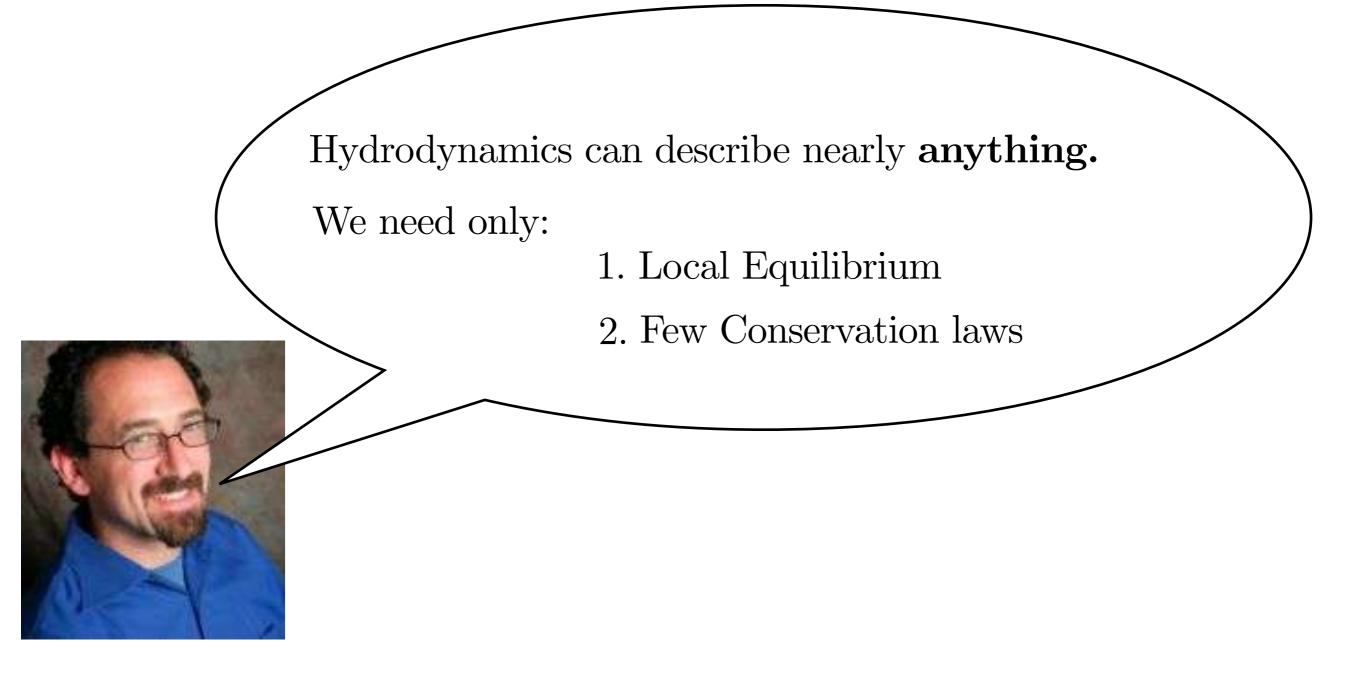
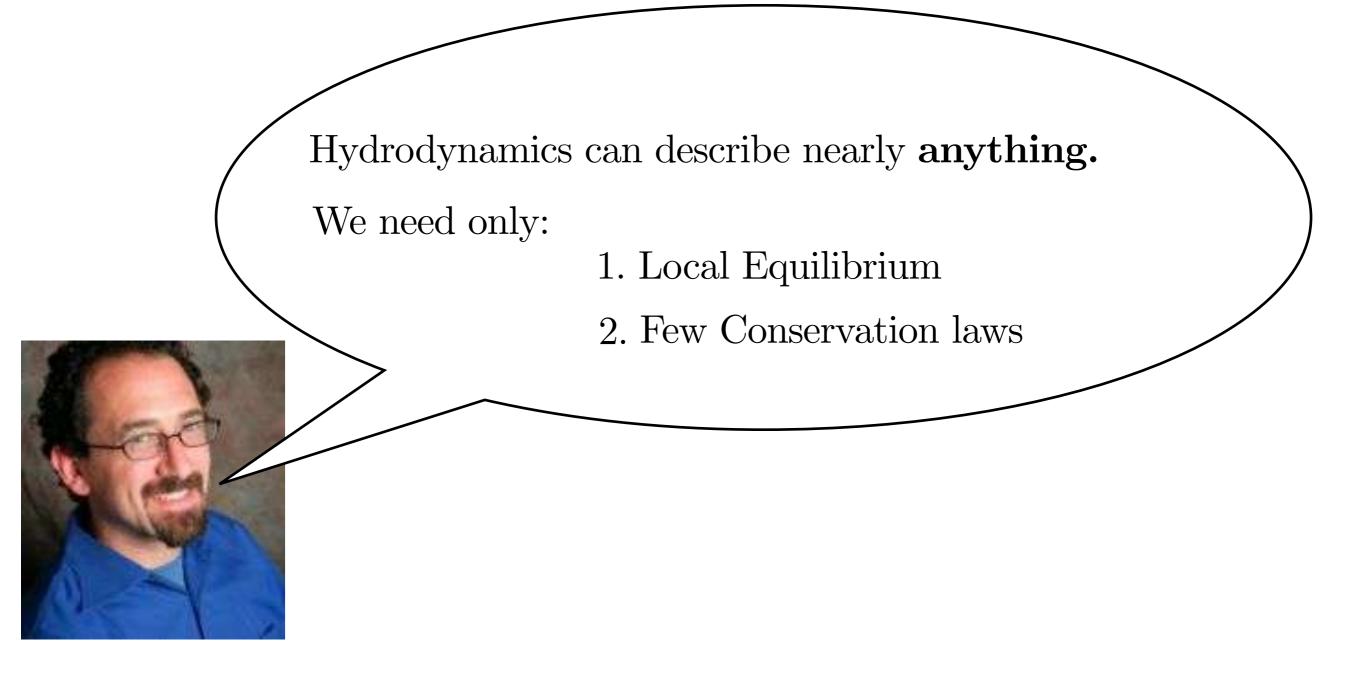
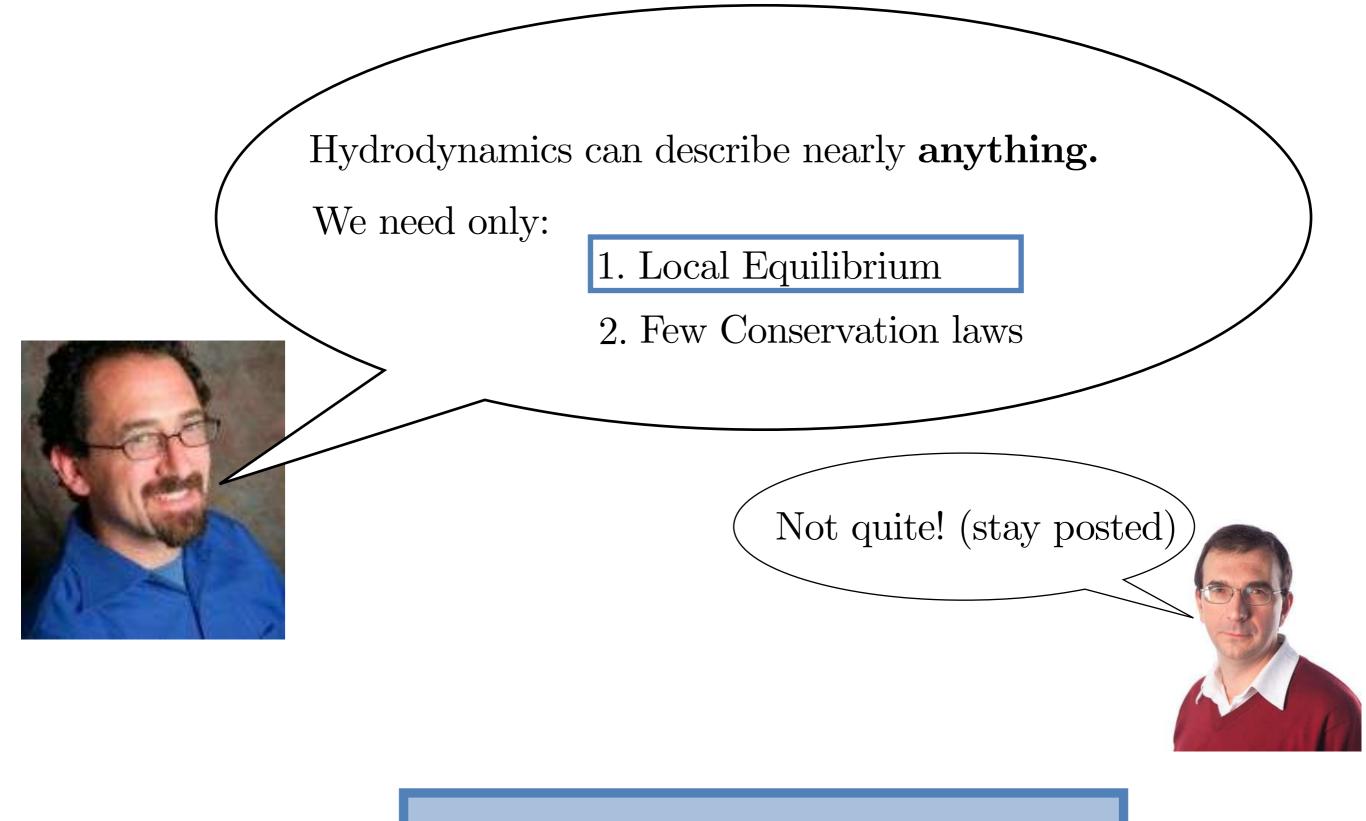
Hydrodynamics for systems with extensive memory



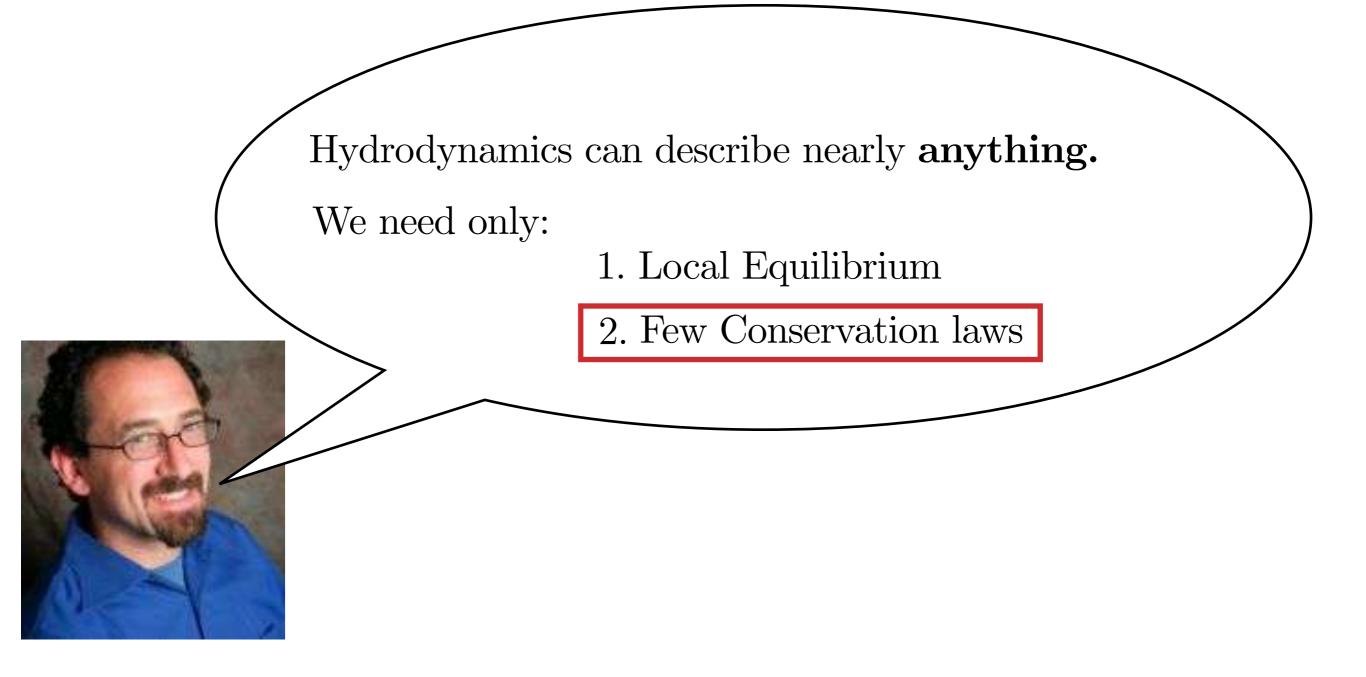




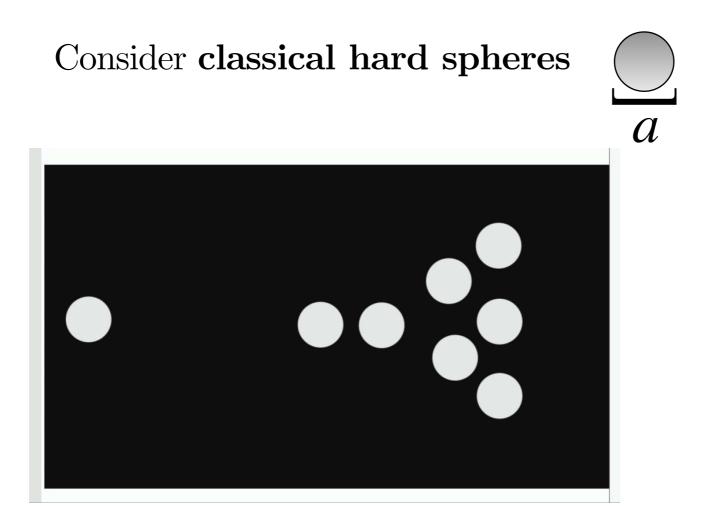
Do we actually need these conditions?



Do we actually need these conditions?



Do we actually need these conditions?



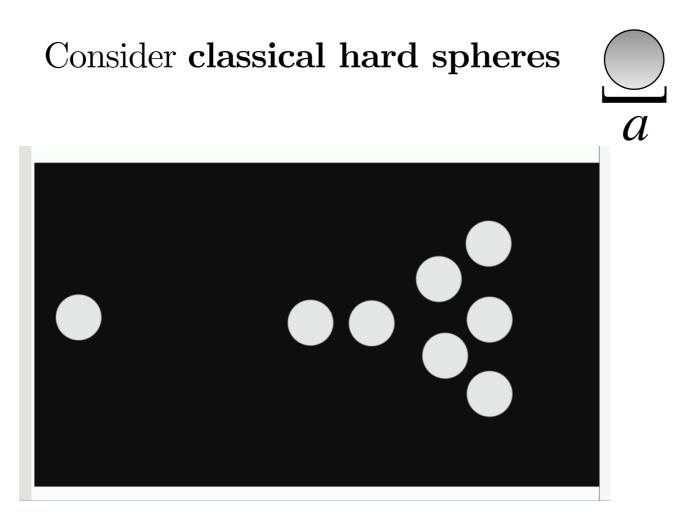
 \bigcirc

2d

- \Rightarrow Only conserve Number, Energy, Momentum
- \Rightarrow Specify the local equilibrium state with {n(x, t), e(x, t), g(x, t)}
 - ✦ Few hydrodynamic equations

$$\{\frac{Dn}{Dt} = 0, \quad \frac{De}{Dt} = 0, \quad \frac{D\mathbf{g}}{Dt} = 0\}$$

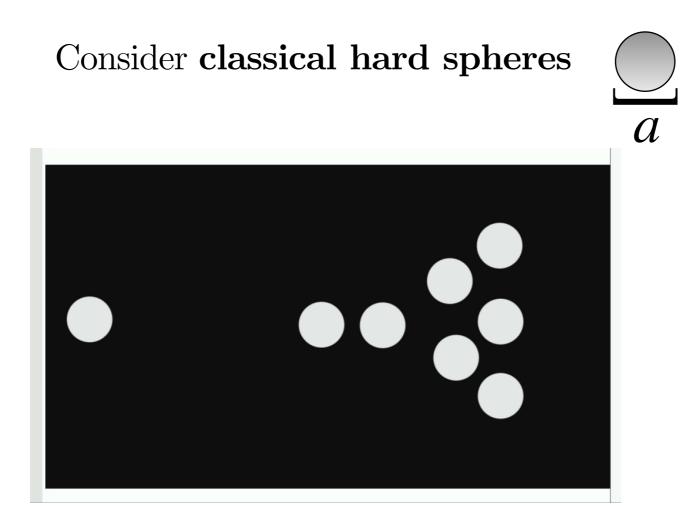
"loss of memory" of the initial condition



 \Leftrightarrow

"loss of memory" of the initial condition

2d

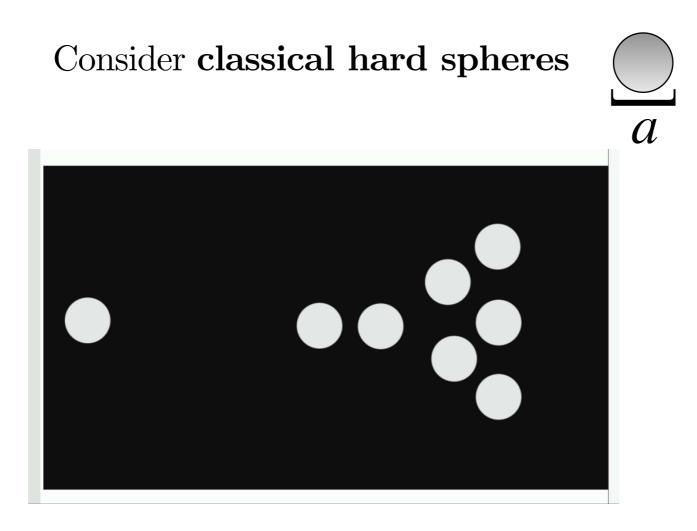


 \Leftrightarrow

"loss of memory" of the initial condition

2d

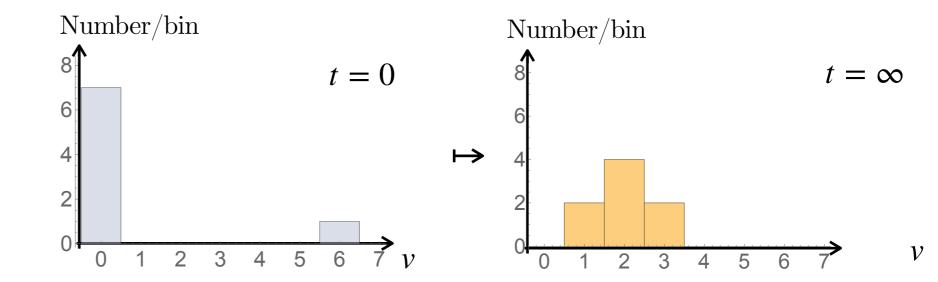
 \bullet Velocities "randomize"



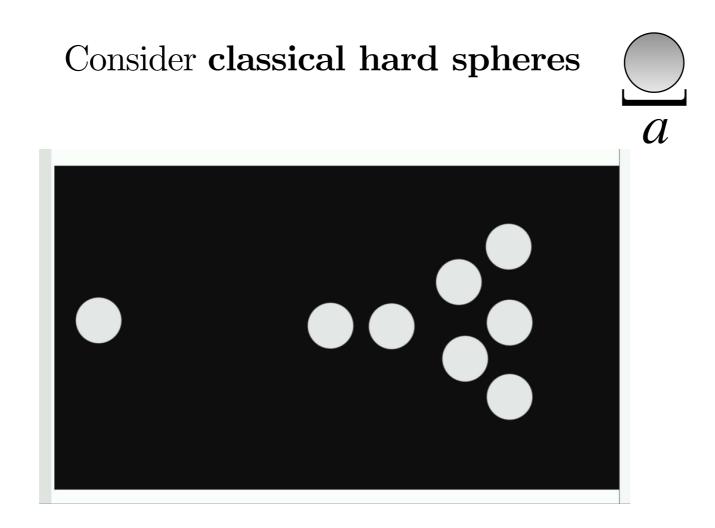
 \bigcirc

2d

• Velocities "randomize"



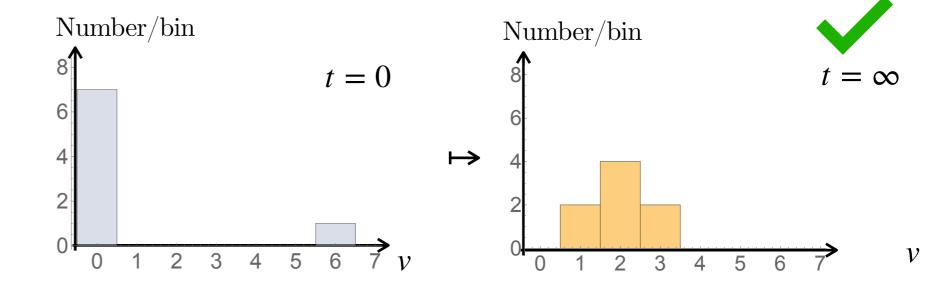
"loss of memory" of the initial condition



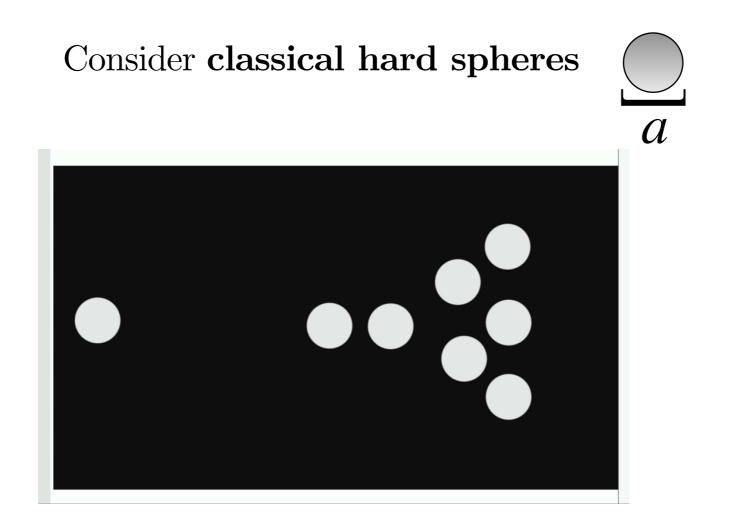
 \bigcirc

2d

• Velocities "randomize"



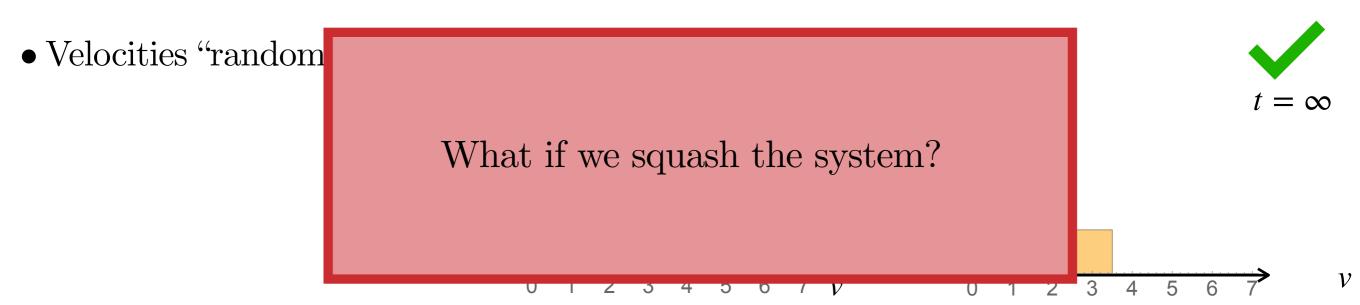
"loss of memory" of the initial condition



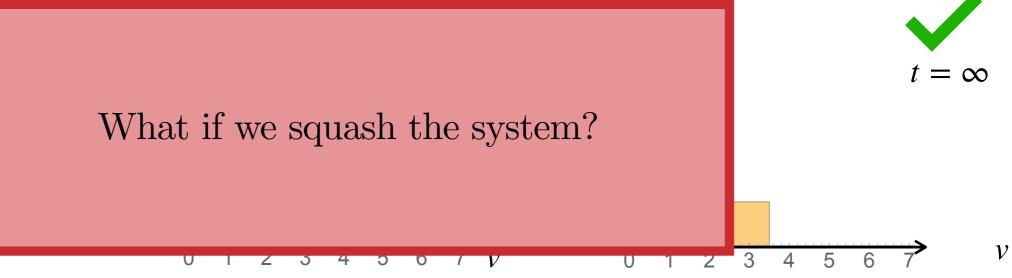
 \Leftrightarrow

"loss of memory" of the initial condition

2d



of the initial condition



"loss of memory" of the initial condition

Few Conservation laws

Consider classical hard spheres

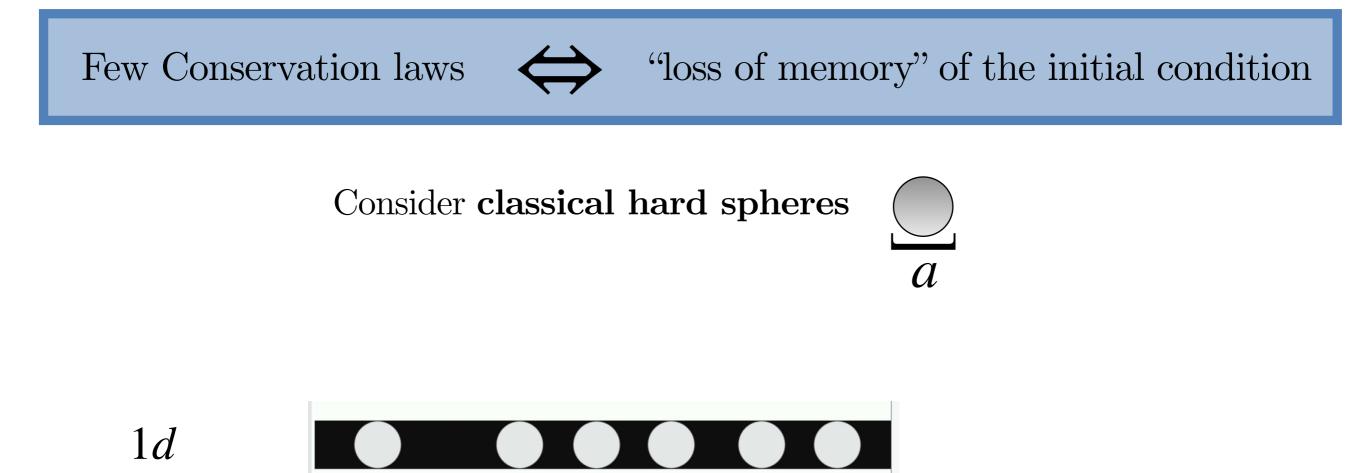
 $\frac{2d}{1d}$

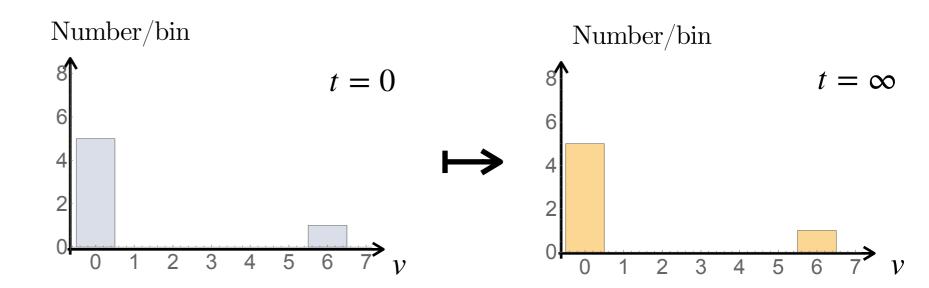
"loss of memory" of the initial condition

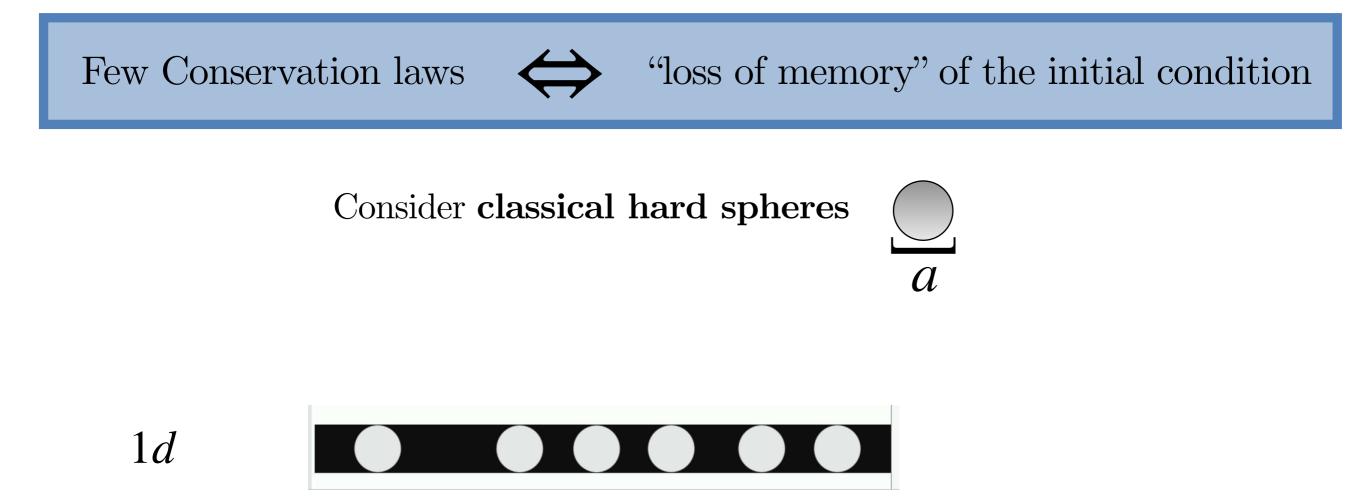
Few Conservation laws

Consider classical hard spheres

1*d*

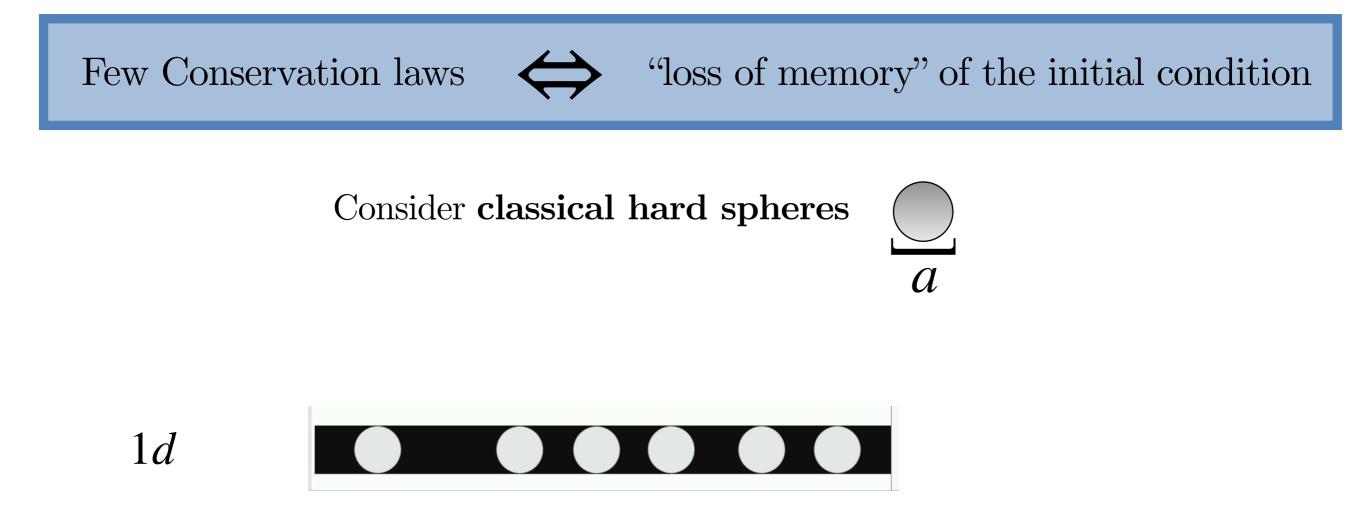


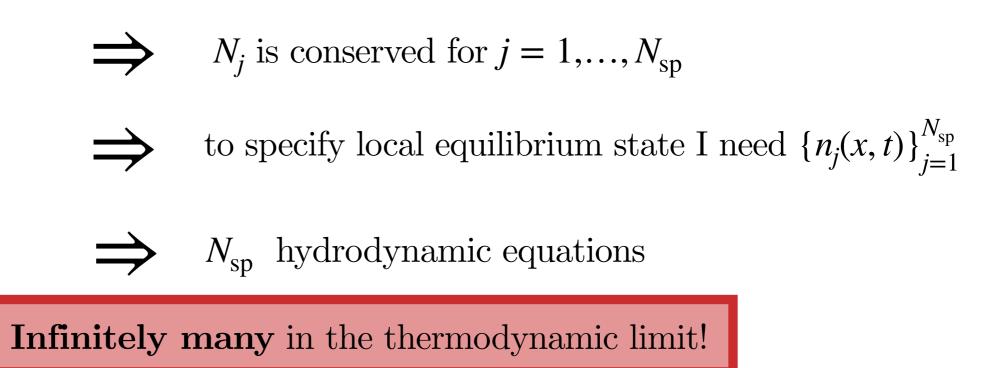


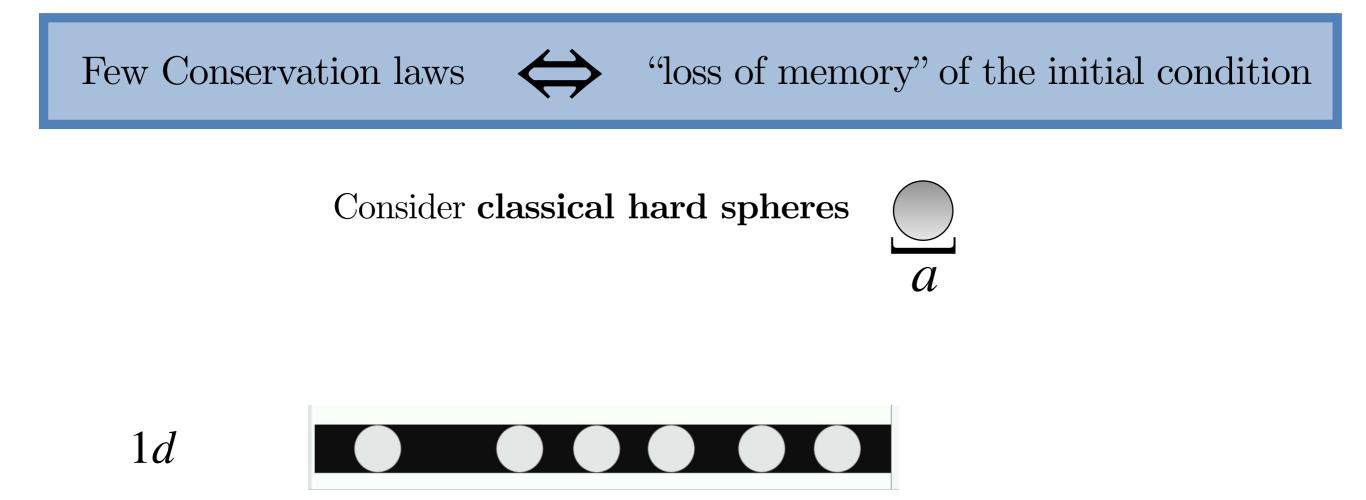


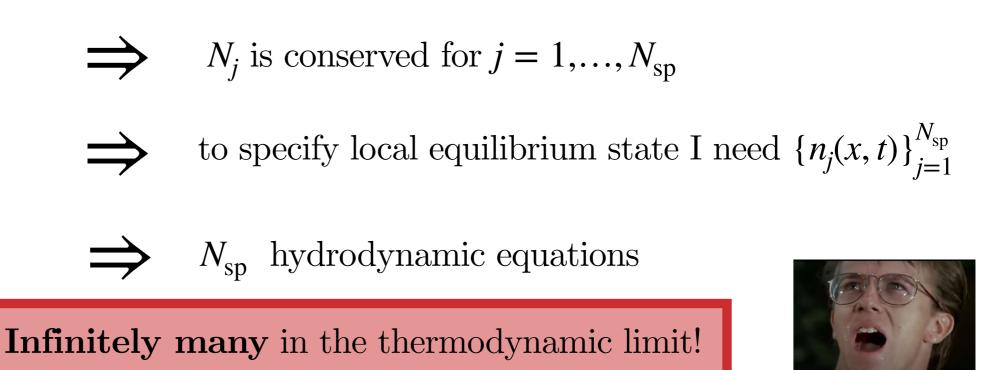
 $N_j :=$ number of particles with velocity v_j $v_j :=$ initial velocity of the *j*-th sphere

$$\Rightarrow N_j \text{ is conserved for } j = 1, \dots, N_{sp}$$









Are there **quantum systems** with this property?

Are there **quantum systems** with this property?

Crash course on QM

- Wavefunction $\psi(\mathbf{r}_1, ..., \mathbf{r}_N, t)$
- Schrödinger Equation $i\hbar\partial_t\psi(\mathbf{r}_1,...,\mathbf{r}_N,t) = \hat{H}\psi(\mathbf{r}_1,...,\mathbf{r}_N,t)$

- Conserved Charges

 $[\hat{H},\hat{Q}]=0$

Are there **quantum systems** with this property?

Crash course on QM

- Wavefunction $\psi(\mathbf{r}_1, ..., \mathbf{r}_N, t)$
- Schrödinger Equation $i\hbar\partial_t\psi(\mathbf{r}_1,...,\mathbf{r}_N,t) = \hat{H}\psi(\mathbf{r}_1,...,\mathbf{r}_N,t)$
- Conserved Charges

$$[\hat{H},\hat{Q}]=0$$

How many conserved charges does a QM system have?

How many conserved charges does a QM system have? Very many!

1d lattice of length L LN = 1 $\begin{cases} \psi(r_1, t) \\ \hat{H} \end{cases}$

the problem becomes linear algebra!

L-dimensional vector

 $L \times L$ matrix

How many conserved charges does a QM system have? Very many!

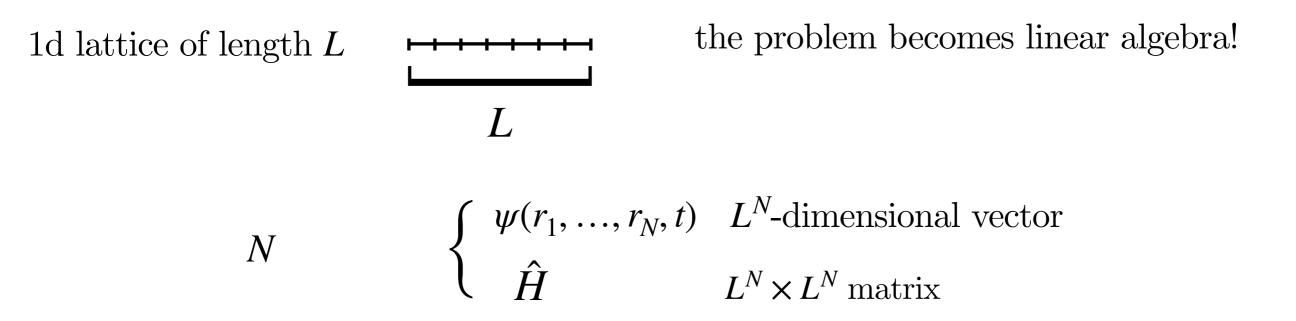
1d lattice of length L

 $\frac{1}{L}$

the problem becomes linear algebra!

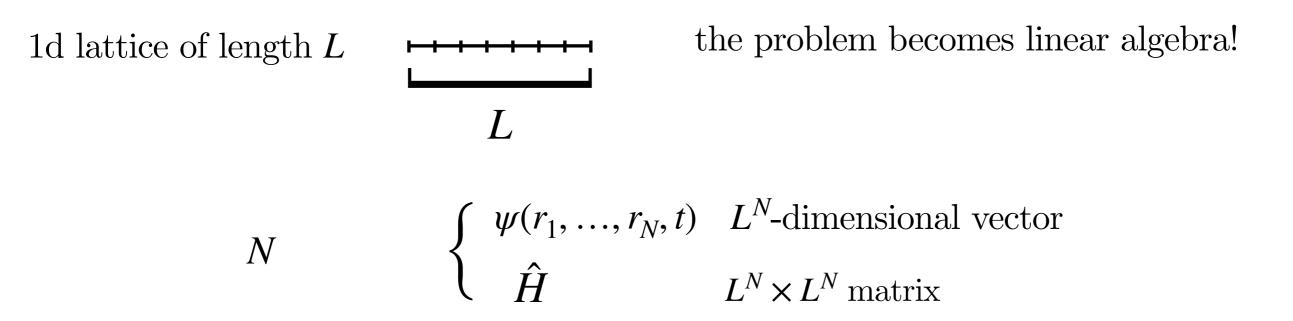
 $N = 2 \qquad \left\{ \begin{array}{ll} \psi(r_1, r_2, t) & L^2 \text{-dimensional vector} \\ \hat{H} & L^2 \times L^2 \text{ matrix} \end{array} \right.$

How many conserved charges does a QM system have? Very many!



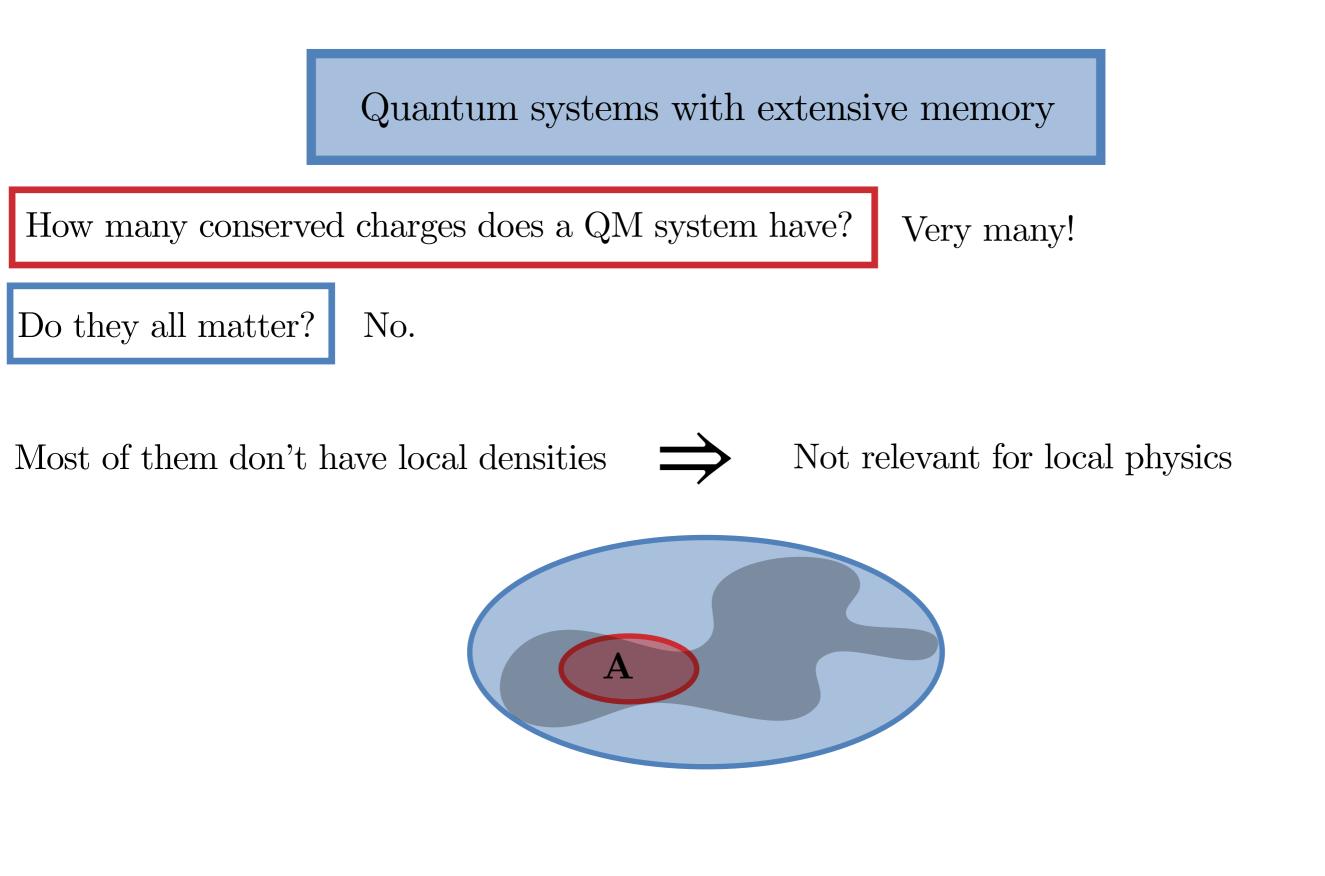
at least L^N independent matrices commute with \hat{H} (diagonal in the same basis)

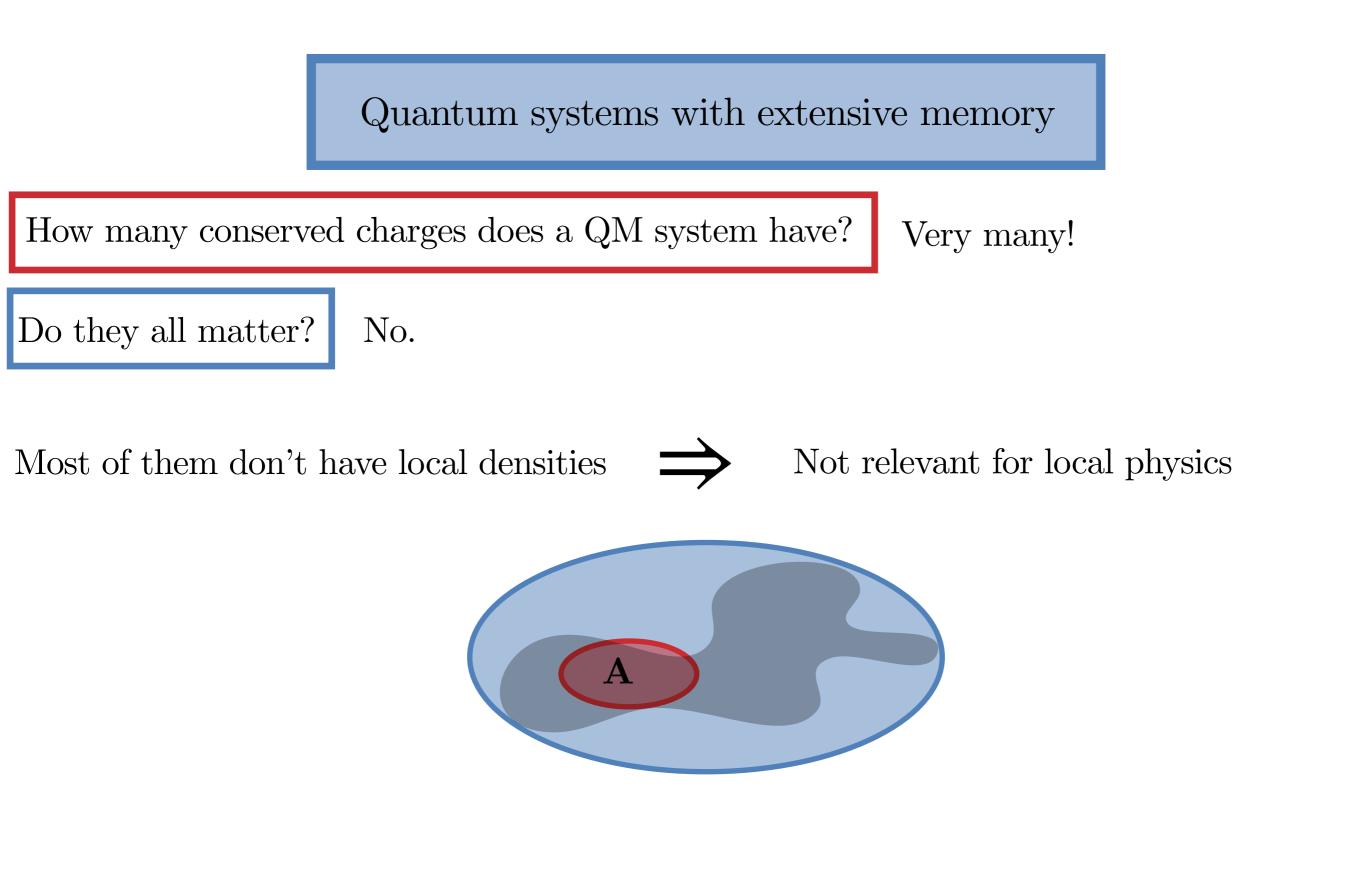
How many conserved charges does a QM system have? Very many!



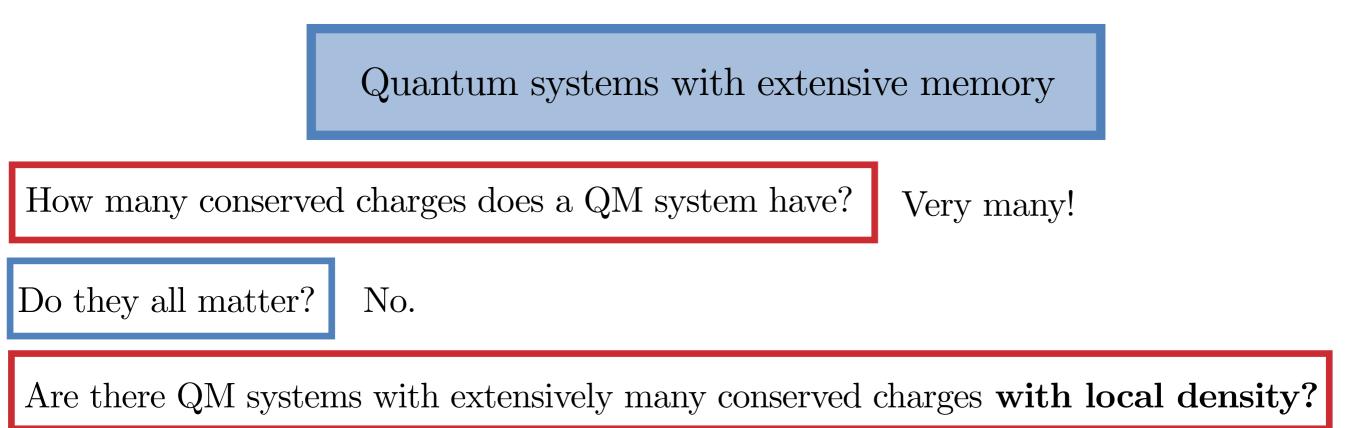
at least L^N independent matrices commute with \hat{H} (diagonal in the same basis)

Do they all matter?

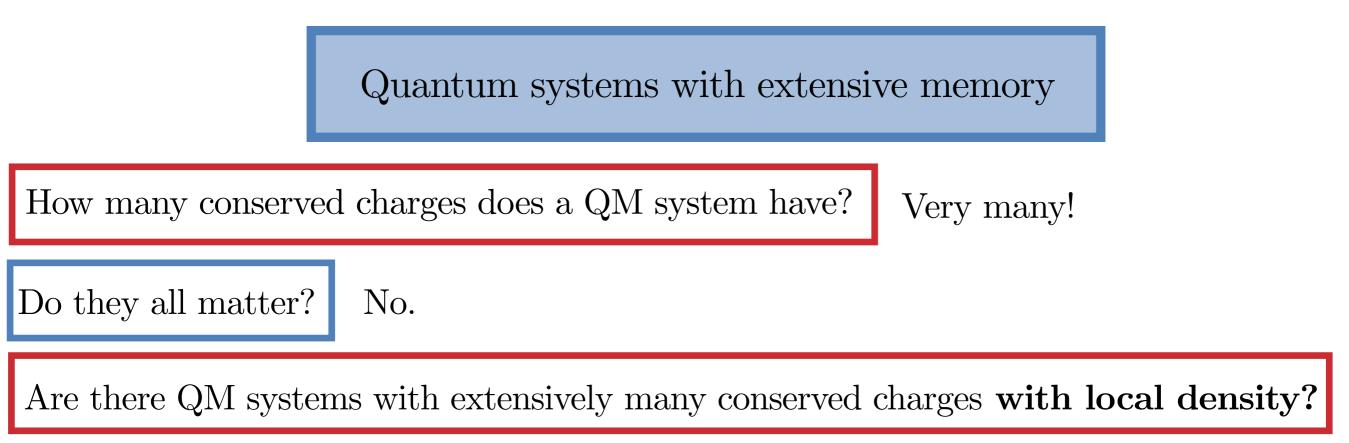




Are there QM systems with extensively many conserved charges with local density?

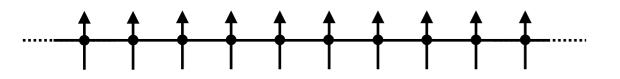


Yes, quantum integrable systems: special mathematical structure

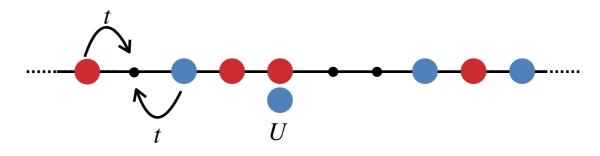


Yes, quantum integrable systems: special mathematical structure

Integrable "spin-chains"



Integrable quantum many-body systems



Integrable quantum field theories

???

Are there **quantum systems real quantum systems** with this property?

Are there **quantum systems real quantum systems** with this property?

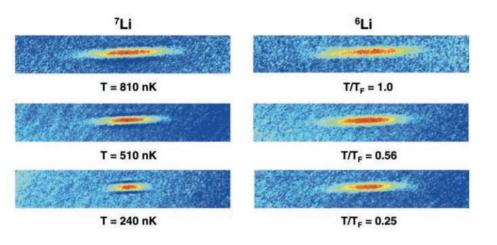
Yes, some of them in Oxford!

Ultracold Quantum Matter Group, Christmas Dinner 2018

Are there **quantum systems real quantum systems** with this property?

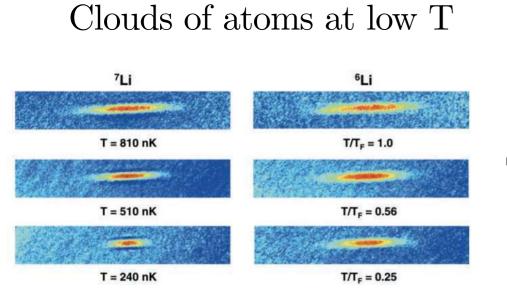
Yes, some of them in Oxford!

Clouds of atoms at low T

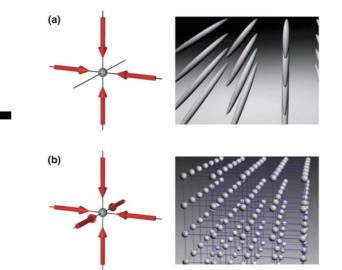


Are there **quantum systems real quantum systems** with this property?

Yes, some of them in Oxford!

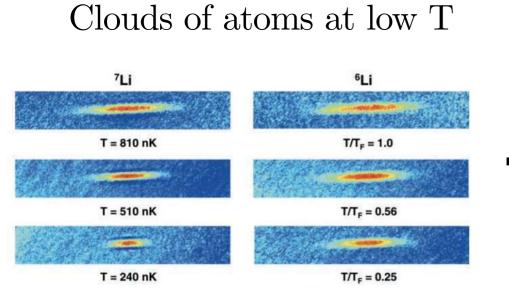


Lattices of laser beams

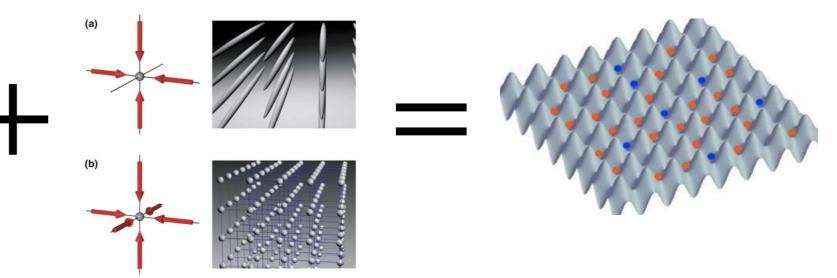


Are there **quantum systems real quantum systems** with this property?

Yes, some of them in Oxford!



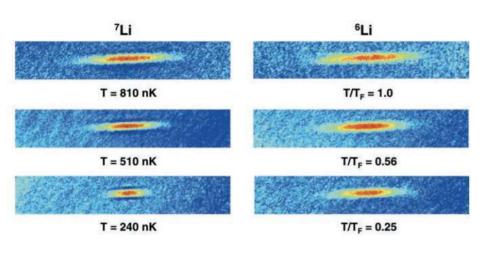
Lattices of laser beams



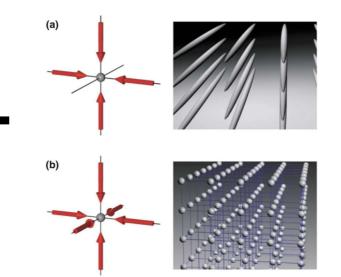
Are there **quantum systems real quantum systems** with this property?

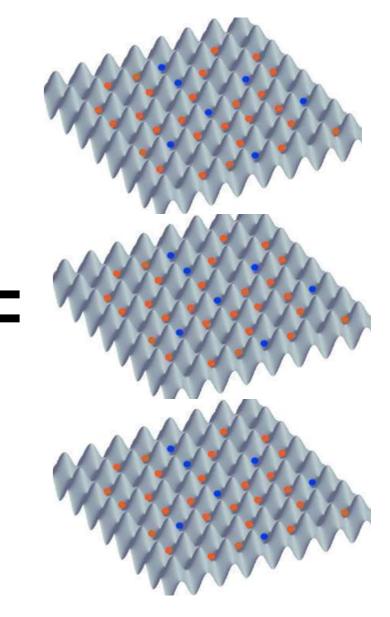
Yes, some of them in Oxford!

Clouds of atoms at low T



Lattices of laser beams



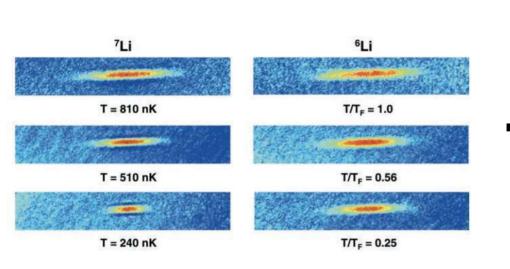


d = 3

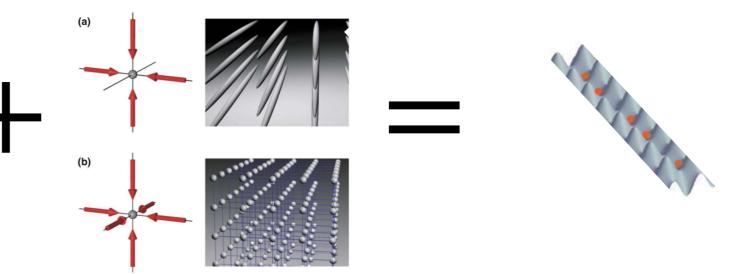
Are there **quantum systems real quantum systems** with this property?

Yes, some of them in Oxford!

Clouds of atoms at low T



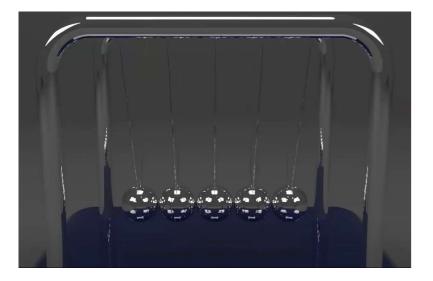
Lattices of laser beams

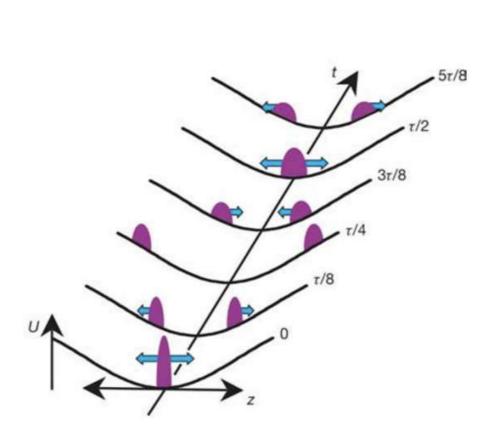


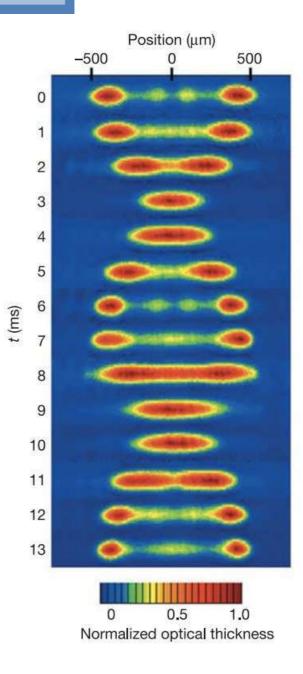
Quantum systems with extensive memory

A quantum Newton's cradle

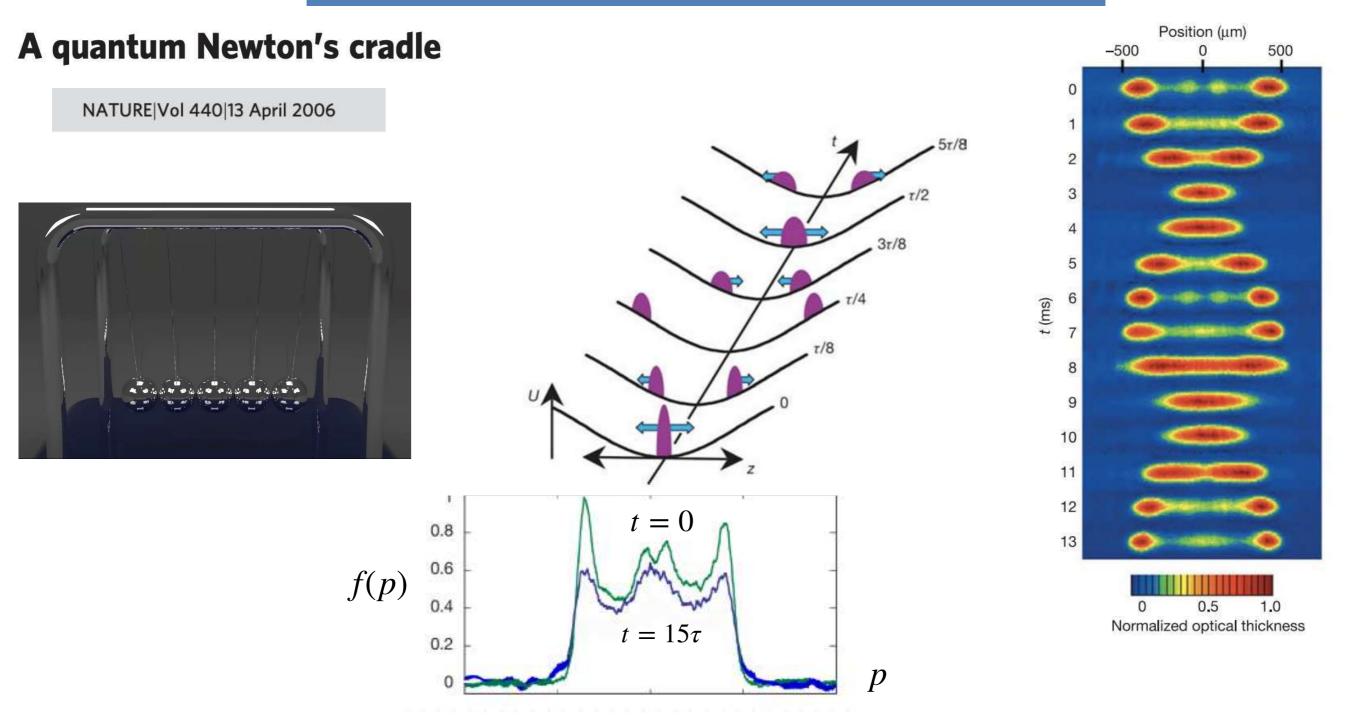
NATURE|Vol 440|13 April 2006







Quantum systems with extensive memory



- "Remembers" the initial momentum distribution like 1d classical spheres
- Instead, in the 3d case it rapidly randomise

${\rm Important}\ {\bf practical}\ {\rm question}$

To describe a quantum system of N particles one needs a wavefunction of 3N+1 variables

This is becomes extremely expensive for N large

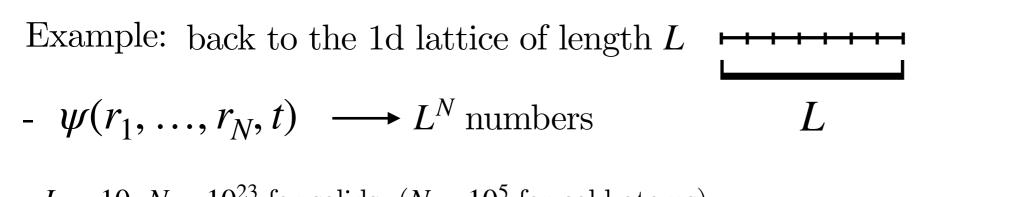
Example: back to the 1d lattice of length
$$L$$
 \longrightarrow L^N numbers L

- $L \sim 10$; $N \sim 10^{23}$ for solids ($N \sim 10^5$ for cold atoms)

${\rm Important}\ {\bf practical}\ {\rm question}$

To describe a quantum system of N particles one needs a wavefunction of 3N+1 variables

This is becomes extremely expensive for N large



- $L\sim 10;\, N\sim 10^{23}$ for solids $~(N\sim 10^5 {\rm ~for~cold~atoms})$

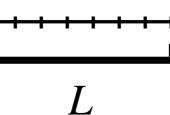
${\rm Important}\ {\bf practical}\ {\rm question}$

To describe a quantum system of N particles one needs a wavefunction of 3N+1 variables

This is becomes extremely expensive for N large

- $\psi(r_1, ..., r_N, t) \longrightarrow L^N$ numbers

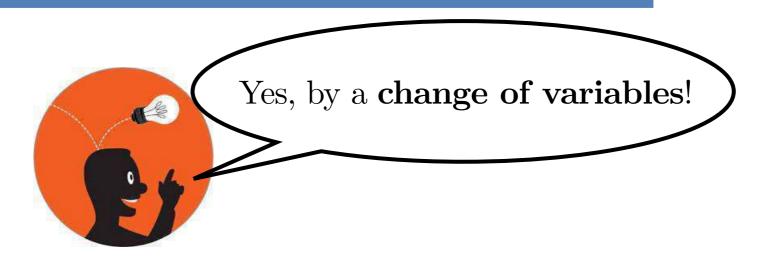
- $L \sim 10$; $N \sim 10^{23}$ for solids ($N \sim 10^5$ for cold atoms)

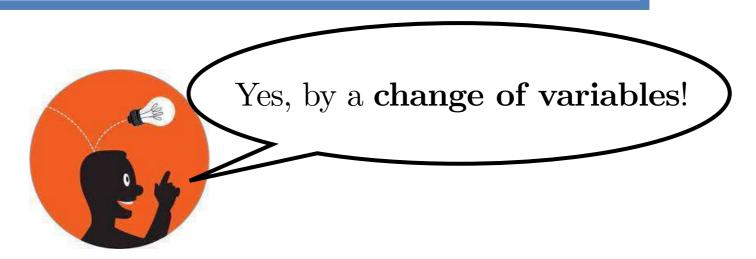


Hydro description only requires a few functions of 1+1 variables

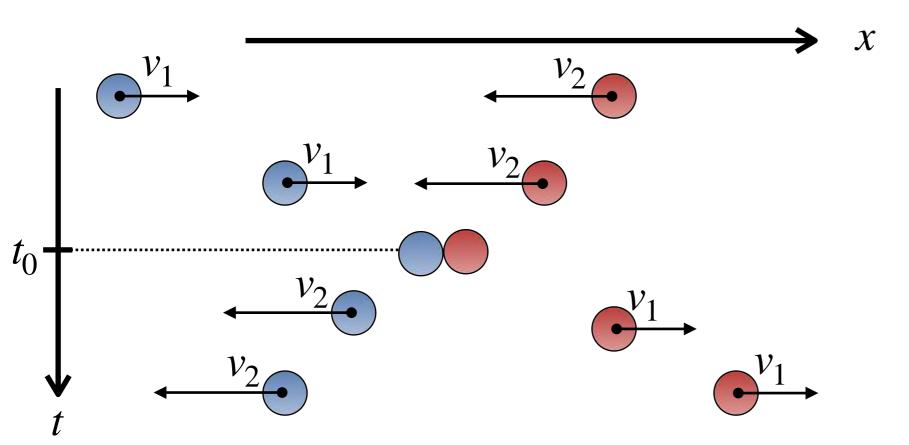
Monumental Simplification!

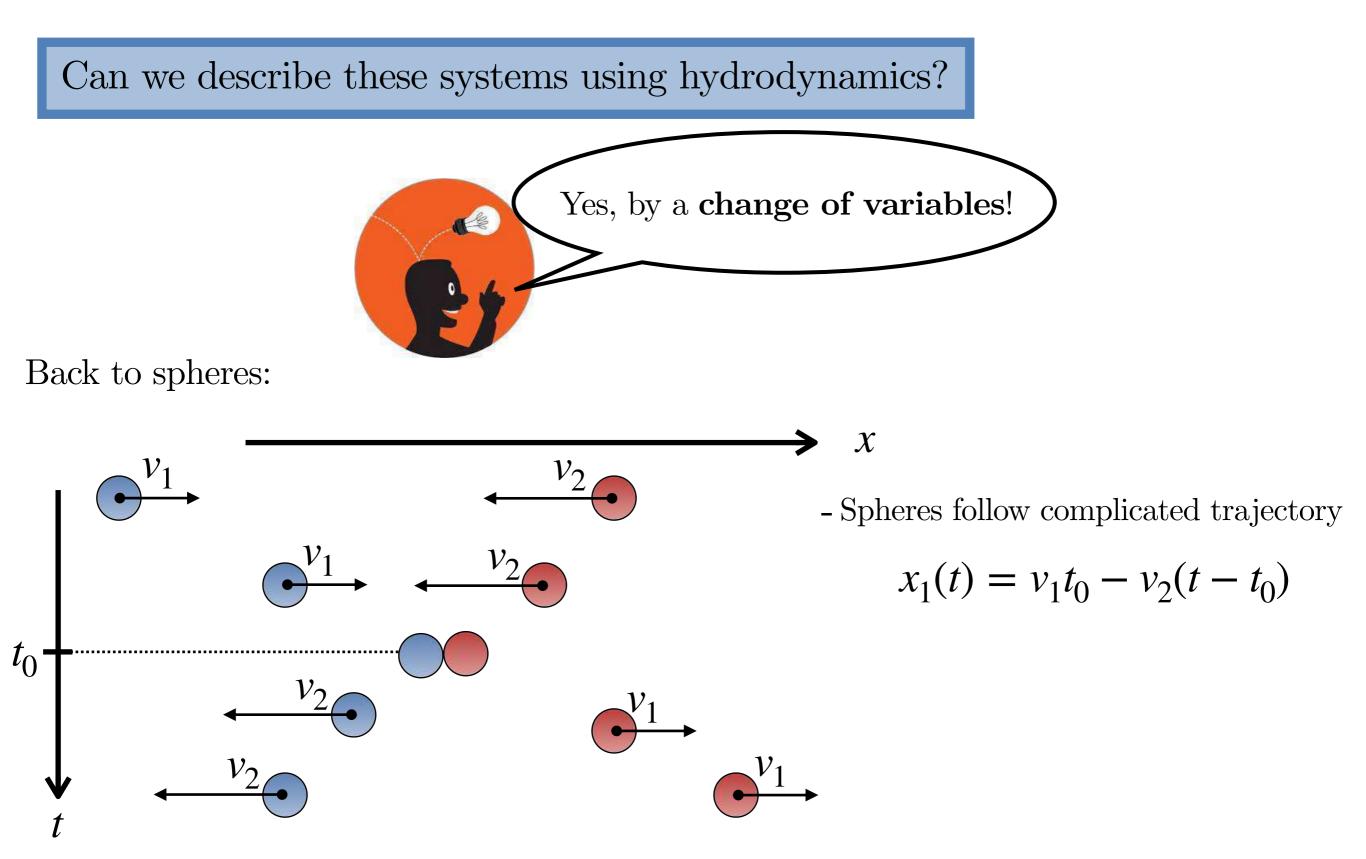
but we would need extensively many equations...

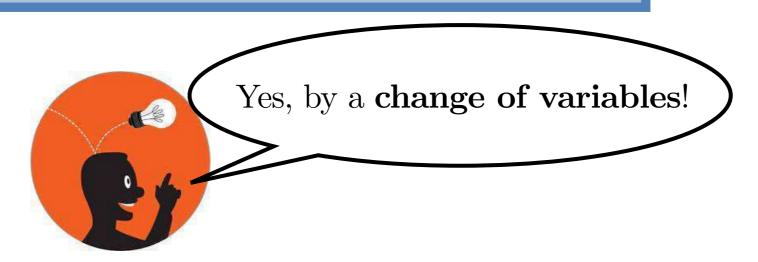




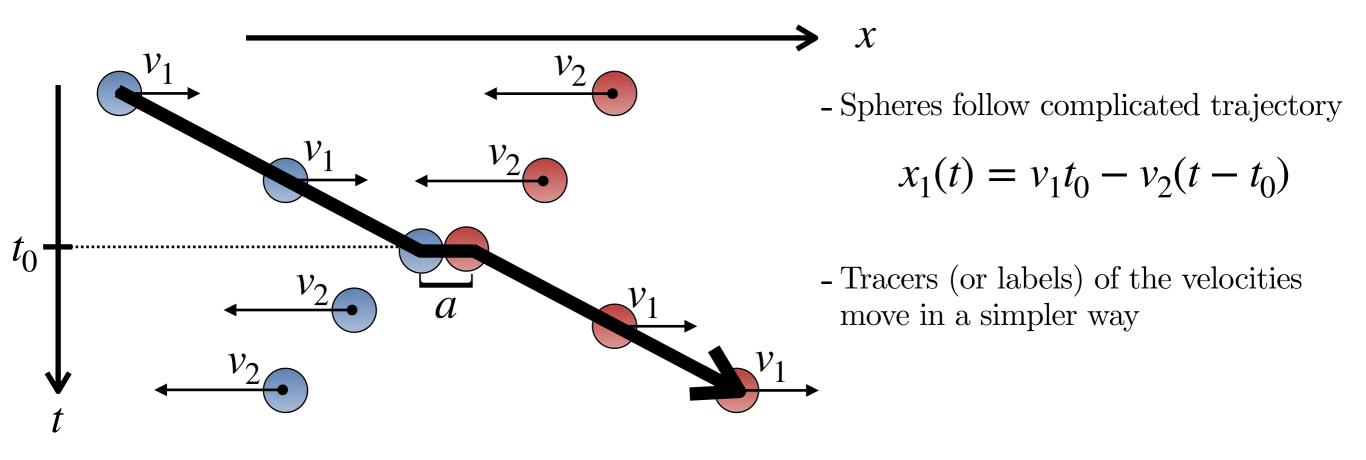
Back to spheres:

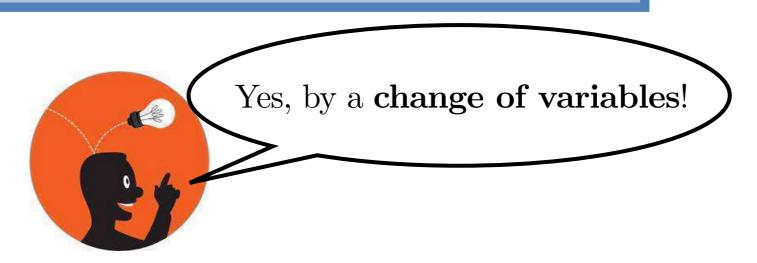




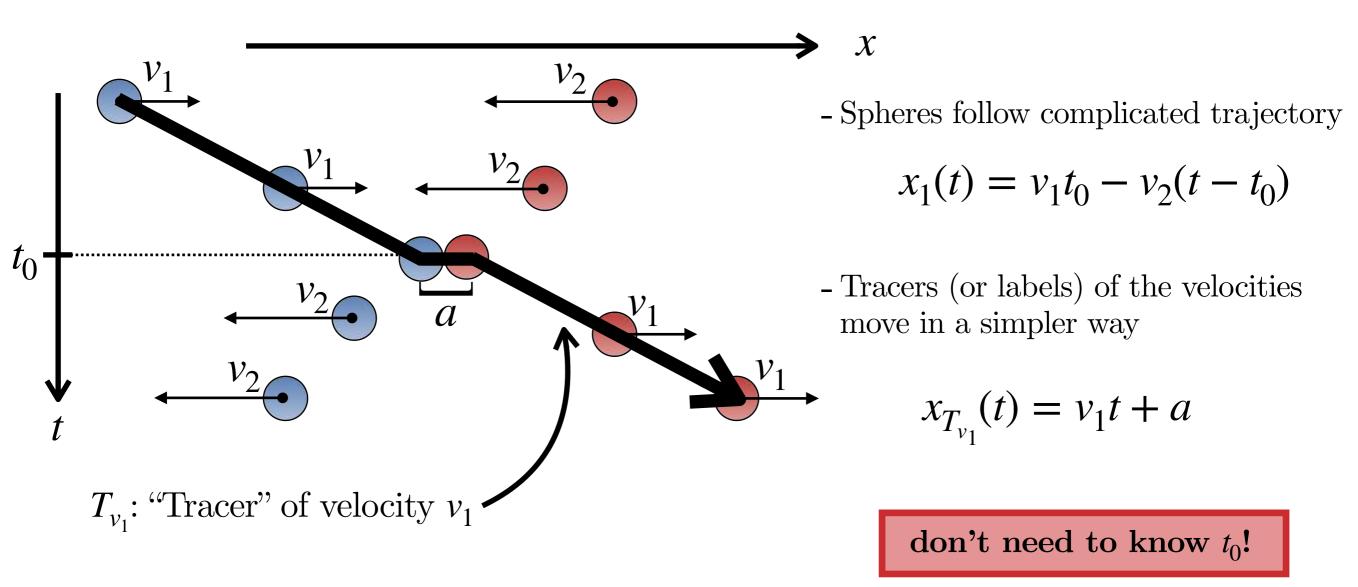


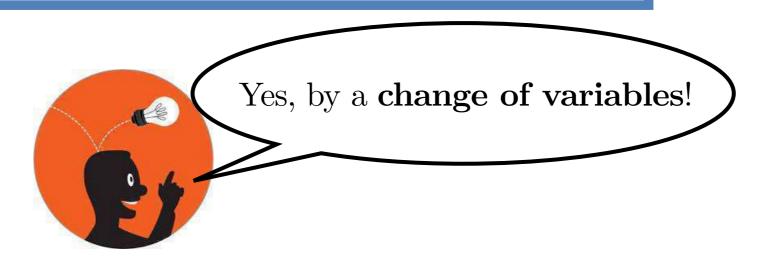
Back to spheres:



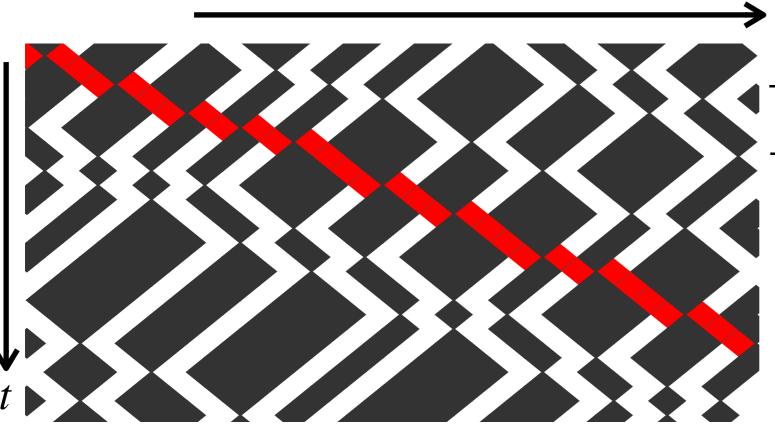


Back to spheres:





More spheres:

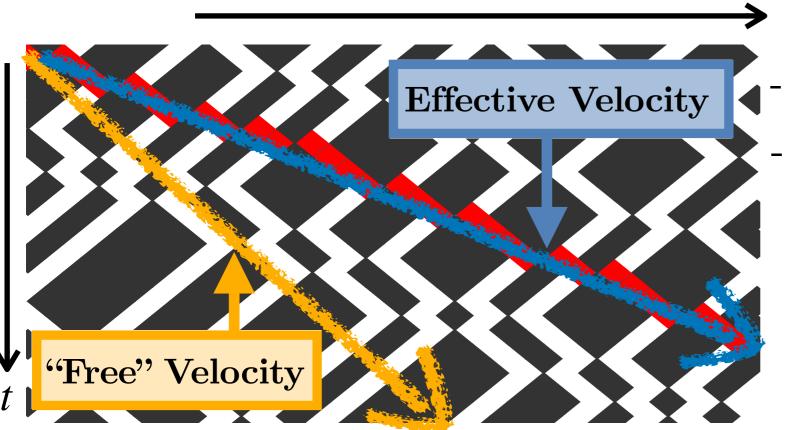


• X

- Spheres follow complicated trajectory
- Tracers (or labels) of the velocities move in a simpler way
 - "almost" uniform linear motion
 - interactions just change the value of the velocity

Can we describe these systems using hydrodynamics? Yes, by a change of variables!

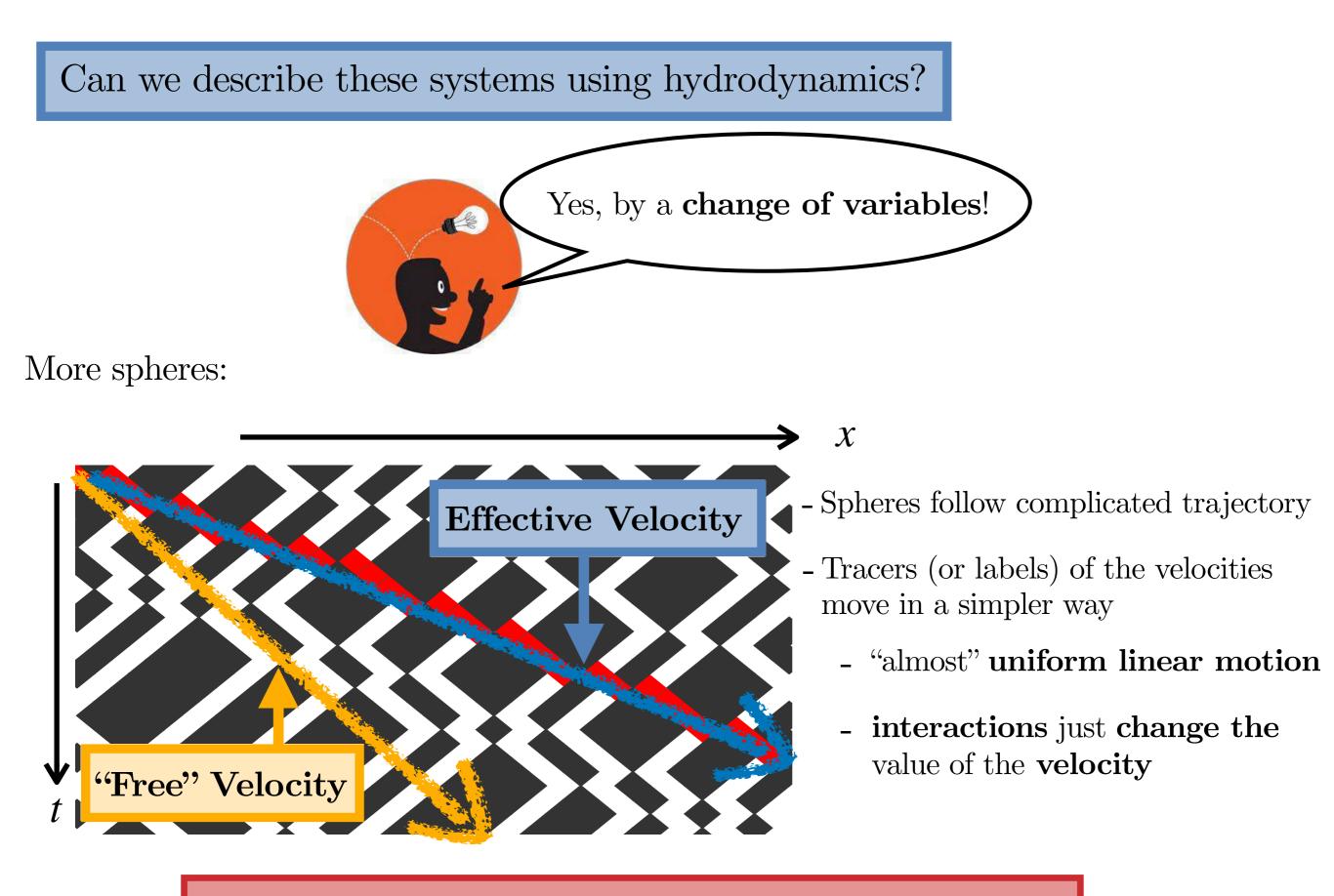
More spheres:



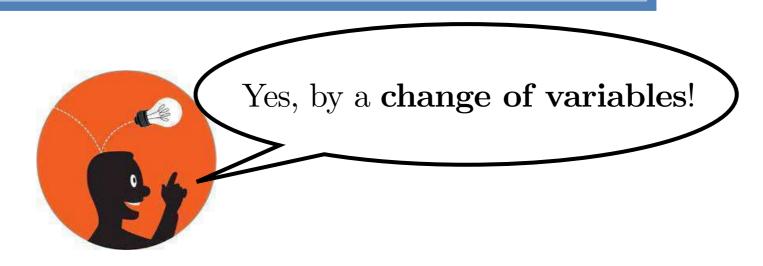
- Spheres follow complicated trajectory

 \boldsymbol{X}

- Tracers (or labels) of the velocities move in a simpler way
 - "almost" uniform linear motion
 - interactions just change the value of the velocity



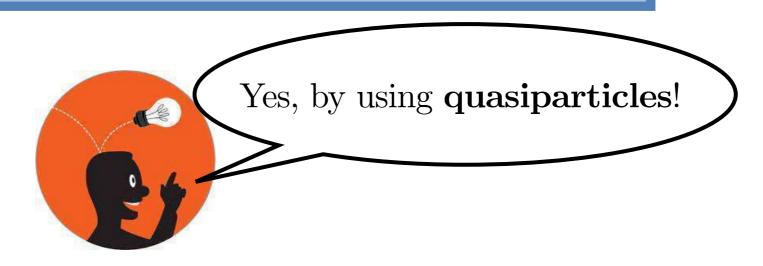
Describe the system using tracers instead of spheres!



Describe the system using tracers instead of spheres!

Key Fact of Nature:

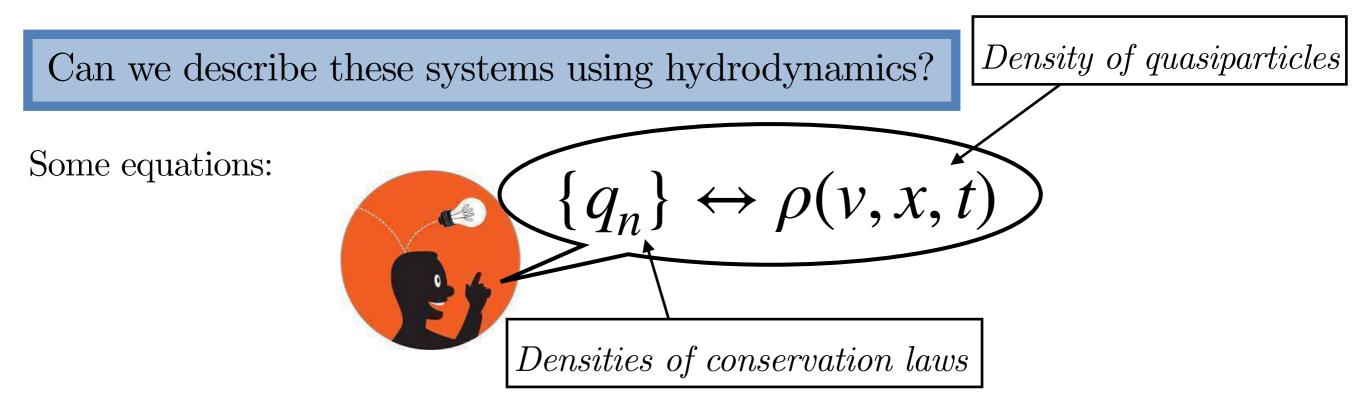
In many cases, complex interacting systems of many particles can be described by *"quasiparticles"*, i.e. *emergent* degrees of freedom that behave as weakly interacting particles in vacuum



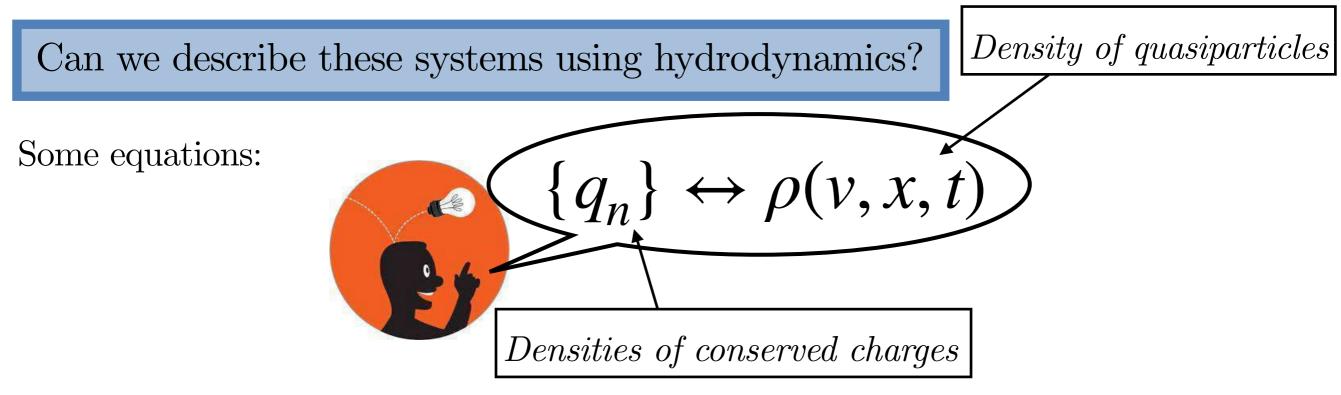
Describe the system using tracers instead of spheres!

Key Fact of Nature:

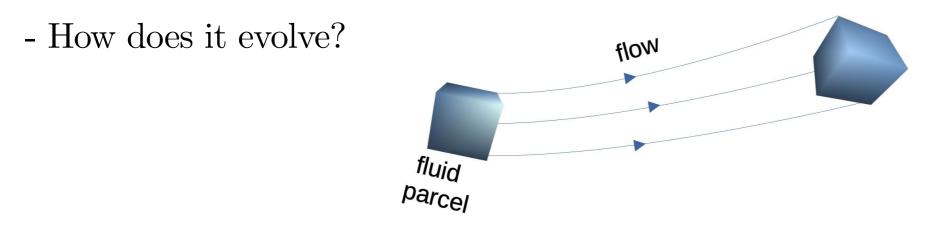
In many cases, complex interacting systems of many particles can be described by *"quasiparticles"*, i.e. *emergent* degrees of freedom that behave as weakly interacting particles in vacuum



- Specify the state of the system using $\rho(v, x, t)$

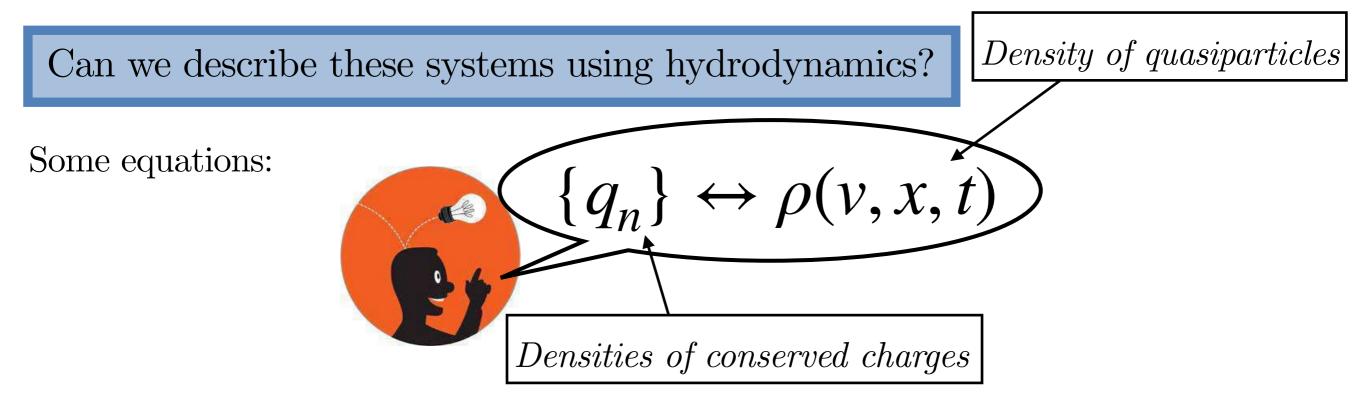


- Specify the state of the system using $\rho(v,x,t)$



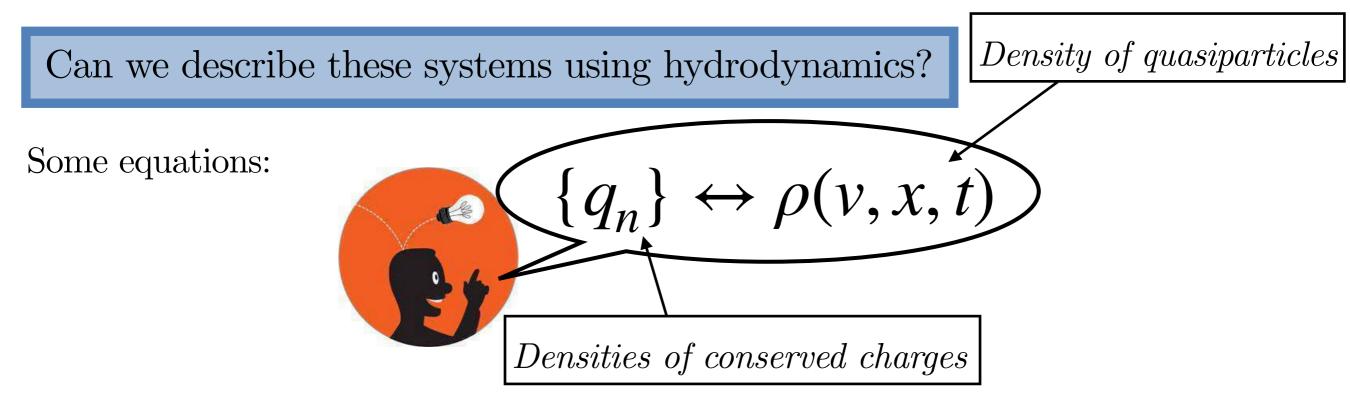
Change in the number of quasiparticles in - Flux of quasiparticles through the parcel - the surface

 $\partial_t \rho(v, x, t) + \partial_x(v_{\text{eff}}(v, x, t)\rho(v, x, t)) = 0$



- Specify the state of the system using $\rho(v,x,t)$
- How does it evolve?

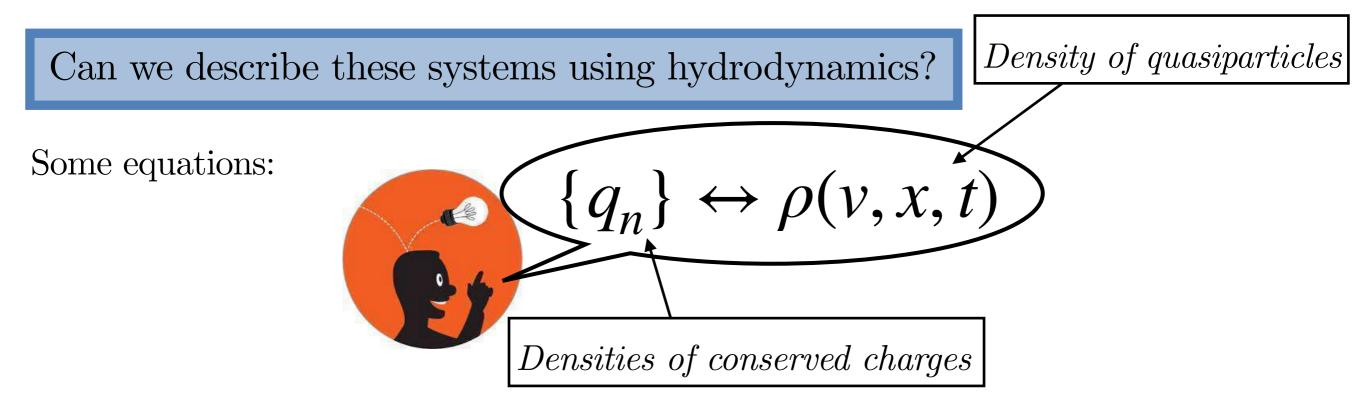
 $\partial_t \rho(v, x, t) + \partial_x(v_{\text{eff}}(v, x, t)\rho(v, x, t)) = 0$



- Specify the state of the system using $\rho(v,x,t)$
- How does it evolve?

$$\partial_t \rho(v, x, t) + \partial_x(v_{\text{eff}}(v, x, t)\rho(v, x, t)) = 0$$

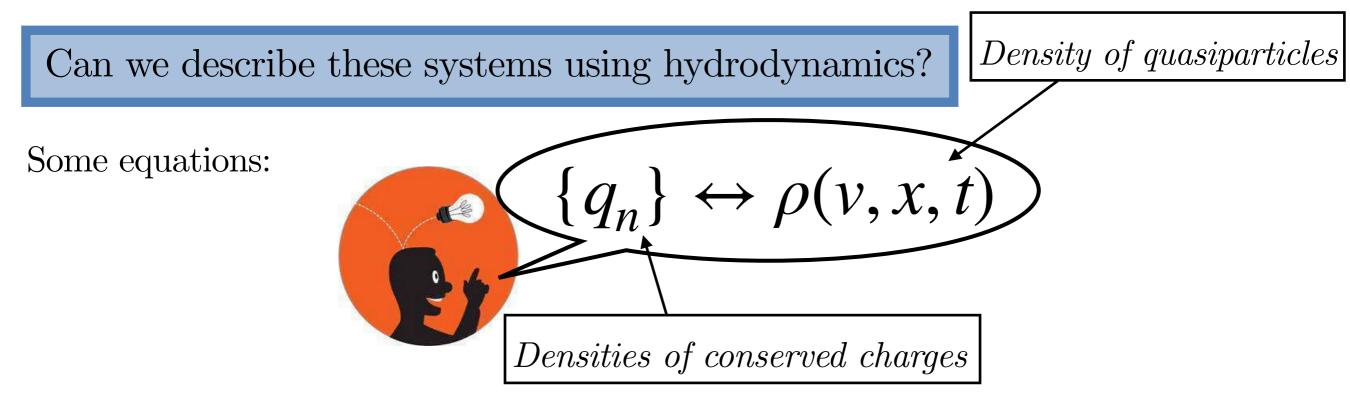
 $v_{\text{eff}}(v)t = vt + a$ number of jumps of the quasiparticle



- Specify the state of the system using $\rho(v,x,t)$
- How does it evolve?

$$\partial_t \rho(v, x, t) + \partial_x (v_{\text{eff}}(v, x, t)\rho(v, x, t)) = 0$$
$$v_{\text{eff}}(v) = v + a \int dw \ \rho(w)(v_{\text{eff}}(v) - v_{\text{eff}}(w))$$

- The velocity depends on the state of the system



- Specify the state of the system using $\rho(v,x,t)$
- How does it evolve?

$$\partial_t \rho(v, x, t) + \partial_x (v_{\text{eff}}(v, x, t)\rho(v, x, t)) = 0$$
$$v_{\text{eff}}(v) = v + a \int dw \ \rho(w)(v_{\text{eff}}(v) - v_{\text{eff}}(w))$$

"Generalised hydrodynamics"

- The velocity depends on the state of the system

The same description applies to **all quantum integrable models**!

The same description applies to all quantum integrable models!

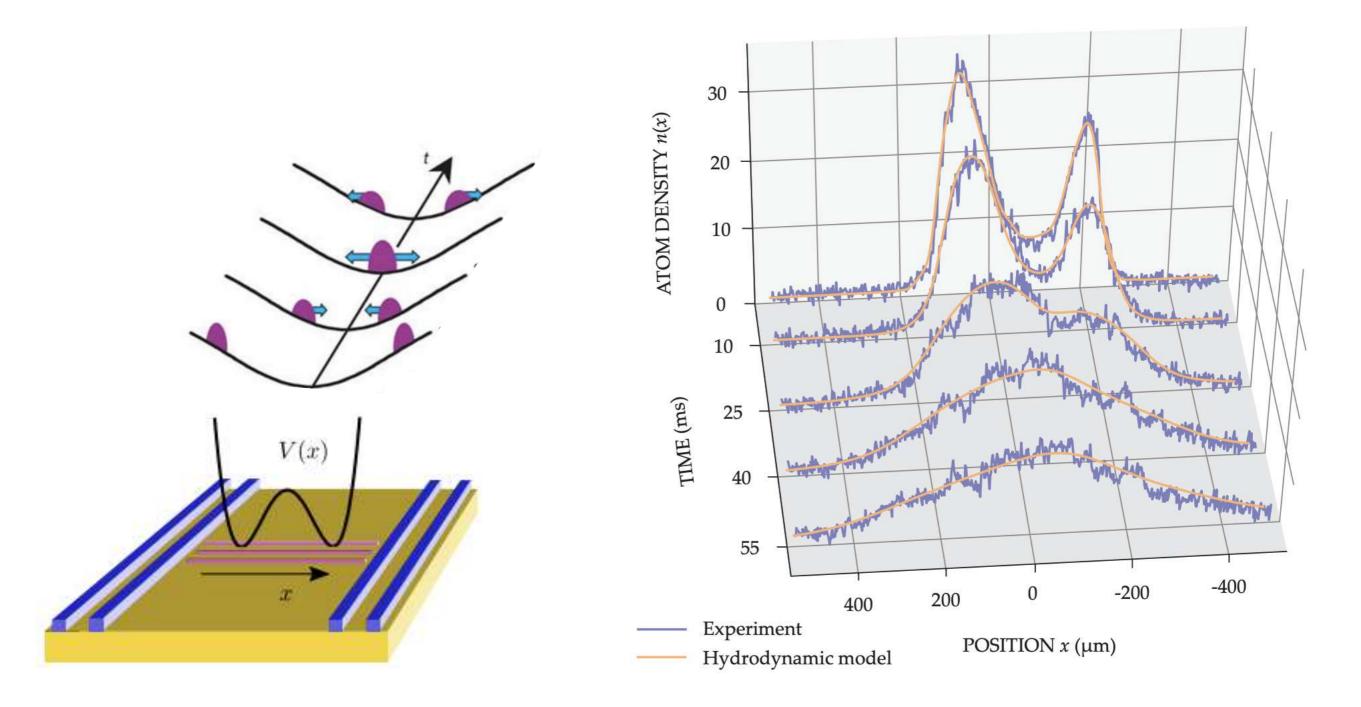
- State of the system described by **emergent quasiparticles**
- Move with effective velocities depending on the state
- Same equations (with velocity-dependent jumps)

$$\partial_t \rho(v) + \partial_x (v_{\text{eff}}(v)\rho(v)) = 0$$

$$v_{\text{eff}}(v) = v + \int dw \ \rho(w)(v_{\text{eff}}(v) - v_{\text{eff}}(w))a(v,w)$$

Does it work?

Quantum Newton's Cradle Revisited



PHYSICAL REVIEW LETTERS 122, 090601 (2019)

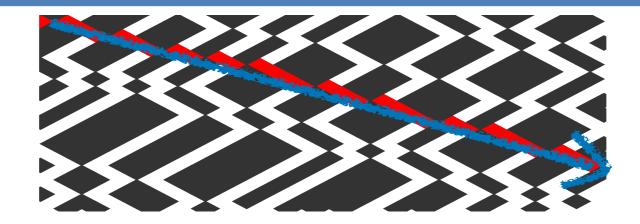
• Some interesting physical systems have an **extensive number of conservation laws**

• In these systems hydrodynamics can be defined by describing the state of the system in terms of **emergent quasiparticles**

 \bullet The nature of quasiparticles depends on the state of the system

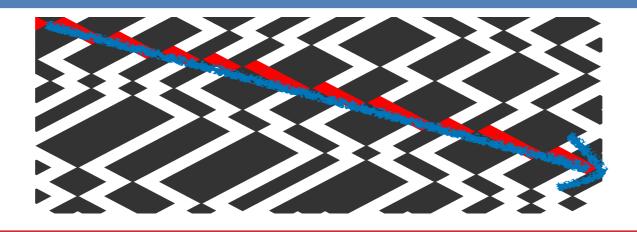
Future Directions

Are there **higher order** terms in Generalised Hydrodynamics (e.g. Navier-Stokes)? Up to what "scale" does it holds?

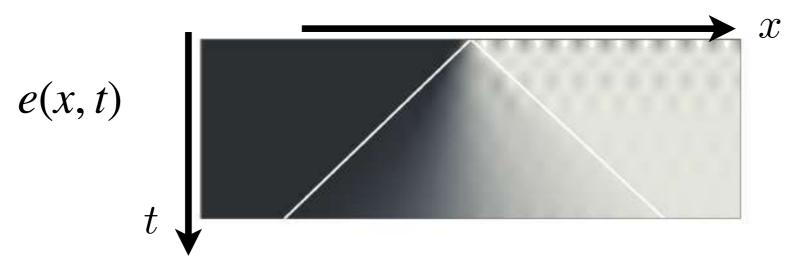


Future Directions

Are there **higher order** terms in Generalised Hydrodynamics (e.g. Navier-Stokes)? Up to what "scale" does it holds?



The theory is classical: Where did \hbar go? How and why does (Generalised) Hydrodynamics emerge from the quantum dynamics?



Future Directions

Are there **higher order** terms in Generalised Hydrodynamics (e.g. Navier-Stokes)? Up to what "scale" does it holds?

